
General expressions for the elastic displacement fields induced by dislocations in

quasicrystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 5423

(http://iopscience.iop.org/0953-8984/7/28/003)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 21:40

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condeos. Matter 7 (1995) 5423-5436. Printed in the UK 
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Abstract The set of partial differential equations satisfied by the phonon and phason 
displacement fields U and w in quasicrystals has been solved by means of Fourier mansform 
and eigenstmin methods, and general expressions of the elastic displacement fields induced by 
dislocations in quasicrystals have been given in terms of the Green function. The elastic Green 
tensor functions for every ldnd of quasicrystal are discussed in detail. Finally, as an example, 
the displacement fields induced by a straight dislocation line along the periodic tenfold axis of 
decagonal quasicrystals (three-dimensional) are calculated. 

1. Introduction 

According to the generalized elasticity theory of quasicrystals suggested by us [I], the 
system of inhomogeneous partial differential equations satisfied by the phonon and phason 
displacement fields, U and w, are as follows: 

In equation (I), the definitions of Ciju and fi are the same as in the classical elasticity 
theory, the components of the fourth-order tensor Kijtl are called the second-order elastic 
constants of the phason field, Rjjkj are the elastic constants associated with the phonon- 
phason coupling, and gj is a generalized body force in mathematical (complementary) space 
PL [I]. 

In the absence of the phason field w, the system of equation (1) will be reduced to 
that for the usual crystals, which can be solved by the Green function method. Moreover, 
this method, as has been proved, is a powerful tool for solving problems in the continuum 
theory of defects, such as dislocations and disclinations. As we know, the systematic mature 
theory on elastic models of defects in crystals was established by the Green tensor function 
method and other methods about 20 years ago 12-41. 

On the other hand, during the past few years some defects such as dislocations and 
stacking faults have also been observed experimentally in quasicrystals. Therefore. how to 
express the elastic field induced by these defects is ,an interesting problem in both theory 
and experiment. It is clear that this problem, considered here, is more difficult than that in 
crystals. In 1987, remarkable progess was made in this field by De et al [5], who derived 
a system of inhomogeneous elastic equilibrium equations of the planar pentagonal smcture 
by the usual Euler-Lagrange procedure, and found the expressions of the displacement fields 
induced by a dislocation point in such a structure, in terms of the Green tensor Function. 
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In order to find a general expression applicable to all quasicrystals in which dislocations 
have been observed experimentally, it would be best to solve the elastic equilibrium 
equations (1) directly. In this paper, we will employ the Fourier transform method and 
another eigenstrain method used to treat the micromechanics of defects in solids 161, to 
solve the system of equations (l), and give the general expressions of the solution in 
terms of the elastic Green tensor function (in section 2). In section 3, we will give explicit 
algebraic expressions of the Green tensors of some quasicrystals when possible. In section 4 
an application to the displacement field induced by a straight dislocation line in a decagonal 
quasicrystal, which is a three-dimensional (3D) body, will be given. Finally some problems 
are discussed in section 5. 

2. General expressions of the solution in terms of the Green tensor function 

By the definitions of the eigenstrain and eigenstress [6], we can assume that a subdomain 
V' in a body V is subjected to a given eigenstrain induced by phase transformations, plastic 
deformations or other kinds of non-elastic strains. It follows that an eigenstress field, i.e. a 
seE-equilibrated internal stress field caused by the eigenstrain in V',  will occur in the body 
V .  From the nature of the case, there will be an elastic strain field responding to it  in V .  
According to the elastic theory, the eigenstress is related to the elastic strain field by the 
generalized Hooke's law. 

Here, we take two sets of orthogonal coordinate systems in the physical space 41 and in 
the mathematical space Pl, respectively, as we do in the projection method. Consequently, 
the phonon and phason strain fields, Eij(x) and wij (x) ,  are defined as follows: 

= &(ajuj  + aiui) W" '1 - a .  - 1wi (2) 

where U and w are the phonon and phason variables, respectively. All of U, w, Eij and 
wij are functions of the position vector x ( X I , X ~ , X ~ )  in Pa. It should be noted that in 
wi j  = ajwi ,  wjs are components in Pl, but 3, a /axj  are derivatives with respect to 
coordinate variables x j  in PI,. The eigenstrain fields denoted by * induced by defects and 
the elastic strain fields denoted by ' in quasicrystals must consist of two parts: E;, Eij 
associated with the phonon variable and w;, wij associated with the phason variable. The 
latter are absent in the usual crystals. Therefore, the actual strain fields Ejj and wij in V 
are the sum of the eigenstrain and elastic strain fields: 

(3) 

Moreover, the related internal stress fields are also divided into two parts: 4j and Hlj .  
Substituting equation ( 3 )  into the generalized Hooke's law [I]. we can easily obtain the 
following expressions: 

Eij  = E*. + E ! .  w . .  I J  - - wij * + Wb. V U 

According to the eigenstrain method, we assume that a quasicrystal is an infinite, 
homogeneous and free body. Thus, we have fi = gi = 0 in equation ( I ) ,  and the boundary 
conditions z j n j  = H,,nj = 0 when x + W. 
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Substituting equation (4) into the static equilibrium equations [l] ,  
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ajTij = o ajH, = 0 (5) 
we have 

c ; j k l a j a r U k  + RijklajaWr = CijklajElI + Ri jk la jWl l  

RkIijajalUk f KijkIajaiWk = RklcjajEZl f KijklajWll. (6) 

By comparing equation (6) with equation (1) one can see that the contribution of EiI 
and wil to the equilibrium equations is similar to that of two body forces Xi and Yi: 

The subsequent procedure is to solve equations (6). According to the definition of the 
Fourier integral and Fourier transform for a function j ( x ) ,  we have 

with dk  = dkl dkz d k 3  and d x  = dxl dq d x 3 .  

system of equations: 
Cariying out Fourier transformation for equations (6), term by term, we can find the 

satisfied by the Fourier transform &(k) and G;(k), where 

and 

For convenience of the next derivation, it is better to change equations (9) to a general 
matrix form in the following way. First, we define a 6 x 6 symmetrical matrix A@, which 
consists of four matrices of coefficients hfjk, Rii, RL and Nix on the left of equations (9): 

(12) A" = SP(S;Mjj +6f-3R;j) + C ? ; - ~ ( $ R ~ ;  +S!-3Nij) .  

Next, we define two pairs of 6D vectors, Va, 8. and Z", .%: 

v"(x) = S ~ ~ i ( x ) + 8 ~ - ~ w ~ ( x )  c,(k) = 8 ~ l i i ( k ) + 8 ~ - 3 u ) i ( k )  (13) 

~"(e') = 8pxi(e') + s ; - ~ Y ~ ( ~ ' )  P ( c )  = $.fi(t) + sq-3%(k) (14) 
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where 

1 a - 3 = i  
0 a - 3 f . i .  

a = i  1 
0 a # i  

q - 3  = 

From now on we use indices a, p, . . . (= 1,2,3, ... ,6) for superscripts and indices 
i, j, , . . (= 1,2,3) for subscripts. After these procedures, equations (9) can be expressed in 
the form of standard inhomogeneous algebraic equations: 

A"@(k)VP(k) = p ( k ) .  (16) 

The solutions of the algebraic equations can be expressed as: 

V"(k) = W ( k ) . Z s ( k )  (17) 

with 

@(k) = [AeP(k)]-' = B u B ( k ) / D ( k )  (18) 

where D(k)  is the determinant of the matrix A" and B"B(k) are the algebraic complements 
of A'O, and 

1 m  
87r3 -m 

z B ( k )  = - / Zp(z') exp(-ik . d) dz'. 

According to equations (8) and (19), we immediately obtain 

(20) 

Usually, we would like to express the solutions of U and w in terms of Green functions 
G@(z - x') as 

m 
Gap(, - z')Zfl(z')dz'. 

Comparing equations (21) and (ZO), we have 

Substituting equations (14) and (7) into (21). we finally obtain the solutions of V a  ( V a  = ut 
f o r a  = 1,2 ,3  and V e  = wi for a =4,5 ,6)  a~ 

m 

- [,Gap@ - z ' ) ( G f R i j ~ ,  + Si 8-3 K,,kl)3jm;,(z') .. dz' 



Eht ic  fields of didocatiom in quasicrystals 5427 

or 

where 3,. = a / a x j ,  in equation (U), 8, = a / a x j  and 8, = -ay, Then the corresponding 
strain fields Eij ,  UJ~, and stress fields zj, Hi, can easily be obtained from equations (2) and 
the generalized Hooke's law [I], respectively. 

In order to understand the physical meaning of the Green tensor G @ ( x  - x'), it 
is necessary to point out the difference of the subscripts i, j, k, 1 in Cijkl, &jkl and 
R i j k r .  According to the transformation characteristic of the elastic coefficient tensor under 
symmetric operations of quasicrystals, subscripts i, j ,  k, I in Ct,n, j ,  I in Kijxi and i, j ,  1 
in Riju denote the coordinate components in the physical space (i'l), and i, k in K,jkl and 
k in Rijw denote the coordinate components in the mathematical space (Pl) [7]. 

It is clear from equation (7) that the body forces X, and Yi both act at the point xi  in 
91, but the directions of Xi and Yi are directed along different axes. The former is in 41 
and the latter in Pr. 

Therefore, equations (21) and (14) show that G @ ( I  - 1') represents the components 
of the phonon (when CY = 1,2,3) and phason (when 01 = 4,5,6) displacements at the point 
z in 91. This displacement is produced by a unit point body force along the p direction 
acting at the point x( in 9. This body force is in PI1 space when B = I, 2,3 or PL space 
when B = 4,5,6. 

3. Explicit expressions of Green tensors of quasicrystals 

In order to obtain the elastic field induced by defects in quasicrystals, the crux of the matter 
is to calculate the Green tensor G"*(z). Clearly, when the matrices C i j t ~ ,  Kiju and R,jki 
are given, Gap(=) can be, in principle, calculated by equations (lo), (12), (18) and (22) or 
(23). However, it can be seen from equations (18) and (22) or (23) that the calculations of 
the Green tensor involve Fourier integrals of B"fl(IC)/D(IC) where the denominator D ( k )  
is a high-order polynomial from 4 to 12, much higher than that in conventional crystals. 
Hence the practical calculation must be more difficult than that in usual crystals. In the 
following, we will discuss these Green tensors for various quasicrystals and derive explicit 
algebraic expressions of Green tensors for some quasicrystals when possible. 

3.1. The Green tensors of planar quasicrystals ( 2 0 )  

In this case, the Fourier integral (23) takes the following form: 

wherea,p = 1,2,3,4 and i ,  j , k ? l =  1,2. 



After calculating the inverse G@(k) = [A"B(k)]-' from equation (30), and carrying 
out the Fourier integrals (26), we obtain explicit expressions of the Green tensor C"~(P) 
for the planar quasicrystal of point group 5 as follows: 
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where R2 = R: + R;, C I  = pK1 - R2, cz = ( A  + 2p)Kl - R2, c3 = Kl(h + p) and 
r2 = x: +x: .  

3.1.2. Planar quasicrystals ofpoint groups 5 4  IO and 10". In these cases there ate only 
five independent elastic constants, i.e. Rz = 0, compared to the point group 5. Therefore, 
equations (27H31) can be used for point groups 5m, 10 and 10" after letting Rz = 0. 
These results agree entirely with those obtained by De et a1 [5] through another way: 

where uij, &, yij and S i j  are symbols adopted in [ 5 ] .  
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B"(k) = B2'(k) = + 3a4Rl)k4k1k2 + 16a4Rlk:k: ( 3 6 4  

B34(k) = B43(k) = -(asp + 3a6Rl)k4klk2 + 16asRlk:k: (36fl 

B i 3 ( k )  = B3'(k) = aaRlk'(e - k:) + % K l k * e ( e  - 3k:) + a4pk2k:(3k; - kf) 
( 3 6 d  

(36h) 

BI4(k) = B4'(k) = -2Rla8k4kIk2 + (AK1 +a2)Rlk2klk2(k? - 3k;) + 4a7Rtklk;(k: -k;) 
(36i) 

Bz3(k) = E3'(k) = 2Rlask4klkz + (AK1 +a2)RrkZklkz(3k: - k;) +4a~Rlk:kz(k: - g) 

where 

2 2  2 +4a7Rlklk2(k2 - k:) 

+4a7Rlk1k,(k2 -k:) 
Ba(k) = B4'(k) = agRlk4(k: - ky) + a&] k2k;(3k; - k:) + a4pk2k;(ki - 3k:) 

2 2  2 

(36~3 

al = (1 + 214K1 

a3 = (A+  P ) ( K I  + KZ + K3)  

a5 = (A+ ~ P ) ( K z  + K3) 

a7 = (A + / L ) ( K z  + K3) 

a2 = (KI + KZ + K ~ ) P  

a4 = ( K z  + & ) R I  
(37) 

a6 = (A + @)RI  

as = P K I  - R I .  2 

Consequently, the Fourier transforms Gafl(k) can be obtained by equation (IS) using 
equations (35) and (36). Unfortunately, it is difficult to write explicit expressions for 
@(I) .  

3.1.4. Planar quasicrystals ofpoint group 12". For this symmetry there is no interaction 
between the phonon and phason elastic strain fields [8,9], so we have R~,M = 0. Moreover, 
the matrix elements Cijt. and K i j ~  are the same as that of the planar quasicrystals with point 
group Smm. Therefore, the Fourier transforms of the planar quasicrystals of point 
group 12" can be obtained directly from expressions (lS), ( 3 3 ,  (36) and (37) by letting 
RI = 0. Carrying out the double Fourier integral (26). we have the explicit expressions for 
G;"fl(I) as follows: 

I I  1 A+3P 1 A + P  2 Inr - - G ( I ) = - -  
472 P @  + 214 471 PO. + 2p)  r2 

22 G ( I ) = -  

I2 1 A + P  x1x2 G ( I )  = G 2 ' ( ~ )  = - 411. P ( A  + 2 p )  7 
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3.2. Quasicrystalline solids in three-dimensional space 

In this subsection, our discussions deal with three kinds of quasicrystals: icosahedral 
quasicrystals, 3D quasicrystals of crystalline symmetries, such as the cubic quasicrystal 
[IO], and several 3D solids with a periodic axis and a quasiperiodic plane (2D quasicrystals). 
In these quasicrystals defects such as dislocations have been observed in experiment. Thus, 
the discussions here are of great interest both to theory and to application. 

The matrices of CjJ,, Kijkl and Rijkl of the icosahedral and cubic quasicrystals have 
been given in [I] and [ l  I]. It follows that for such quasicrystals A@(k) is a 6 x 6 matrix. 
Its determinant D(k)  is a twelfth-order polynomial. For 3D solids with a 2D quasiperiodic 
plane the elastic properties have been given by us with the group representation theory 
[7,12,13]. The results show that the 9 x 9  matrix of Cijr~ (t, j ,  k ,  1 = 1,2,3) is the same as 
that for the hexagonal crystal, and the matrices of K i j k l  ( i ,  k = 1,2 and j ,  1 = 1,2 ,3)  and 
Rijkl ( i ,  j ,  1 = 1.2.3 and k = 1,2) are 6 x 6 and 9 x 6 matrices, respectively. Therefore, 
A"fl(k) is a 5 x 5 matrix and its determinant D(k)  is a tenth-order polynomial. 

From the discussions above, we can see that it is very difficult to express the Green 
tensor functions CUB(=) by elementary functions, and only numerical solutions can be 
obtained for the elastic displacement fields U and w, in general. 

However, it is possible still to find expressions of U and tu with elementary functions 
under certain special conditions. Such an example will be given in the next section. 

4. Application to dislocation in quasicrystals 

According to the theory of defects in quasicrystals [14-161, the characteristic vector 6, i.e. 
the Burgers vector of a dislocation, is a direct sum 

6 = bll cJj b' (39) 

where bll and bL describe rigid translations in the phonon and phason fields, respectively. 
Following the Volterra procedure in quasicrystals [16], the dislocation condition is given by 
the following two integrals: 

d u  = b" dw = b' 

where c is the contour surrounding the core of the dislocation in the physical space 51. 
Besides the dislocation condition, there are two questions to be answered: how to 

express the eigenstrains E t @ ' )  and U;(%'), and how to determine the subdomain V'. 
In this section, we provide an exercise in the usage of these formulae suggested in this 

paper. We consider that the best way to understand general statements is to work out a 
specific example. 

Here we consider a straight dislocation line in a three-dimensional body with decagonal 
symmetry: a solid that can be described as a stack of periodically spaced layers, each 
of which exhibits tenfold symmetry. According to the group representation theory, we 
have found the non-vanishing matrix elements of the elastic constants C i j k t ,  R i j k l  and K i j k l  

for this type of quasicrystal [7, 12,131. The results for point groups lOmm, 1022, n m 2  
and lO/mmm, i.e. Laue class lO/mmm, show that Cijtl (CKM) are the same as those for 
hexagonal crystals (point groups 6, 6,  6/m, 6m2, 6mm, 622 and 6/m") :  CII = CU, C33, 
Clz, C13 = C23. CM = C55, 2C66 = Cl1 - Clz; Rijkr can be obtained from equation (28) 
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letting RI = 0; and the expression of Kijkl takes the same form as equation (29). These 
constant matrices are referred to the conventional quasicrystal coordinate systems: x3 axis 
is parallel to the periodic direction in the physical space 91, and two X I  axes in PI, and PL 
are parallel to one of the IO basic vectors in the quasiperiodic planes, respectively. It must 
be emphasized that the decagonal quasicrystals (3D) discussed here are not the same as the 
planar quasicrystals with decagonal symmetry discussed already in section 3.1. 

In this paper, as an example, we only discuss a dislocation line that is parallel to the 
periodic direction (x3 axis) and has an arbitrary Burgers vector & = (b!, bi, bl. b:, b i ) .  In 
this case, the dislocation coordinate system is consistent with the conventional quasicrystal 
coordinate system. 

Because the component bl is along the periodic direction without a corresponding 
component in PL, its displacement field is the same as that in any transverse isotropic 
continuum, e.g. in hexagonal crystal [2]. Hence now we only consider the elastic 
displacement field induced by the Burgers vector (by, b:, 0, b:, b i ) .  In analogy to the 
work of De er al [SI, first we calculate the field induced by (b:, 0,O. b:, 0). The results for 
(0, bi ,  0.0, b i )  can then be obtained 6om the expressions for (bl ,  0, 0, b:, 0) by rotating 
the coordinate system in the parallel space 91 by n j 2  and that in the perpendicular space PL 
by 3n/2 anticlockwise, respectively. It is easy to prove that the matrix forms of the elastic 
constants C;jkll Ri jk l  and K,jkr remain unchanged after such a coordinate transformation. 

In the case of a dislocation line parallel to the x3 axis, the displacement vector 
Ve(xl. x2, x,)  is independent of the coordinate x3: V u  = V"(x1, x2) ,  

For (by, 0.0, b:, 0), the subdomain V' consists of a semi-infinite plane (xi < 0, xi = 
0, -CO < x i  < +CO) in PI,. The eigenstrains can be given as follows: 

E;, = E;, = i b l 8 ( x ; ) H ( - x i )  (41) 

UJ;Z = b:G(x;)H(-x;) (42) 

where S ( x )  is the Dirac delta function and H ( - x )  is the Heaviside step function. 
Substituting equations (22), (41) and (42) into (25), we have 

x exp[i(klxl t kzxz)] dkl dk2. (43) 

Next, we calculate the Fourier transforms G'B(k) of the Green functions. Fortunately, 
when kp = 0, @'b(k) for decagonal quasicrystals with point groups lO/mmm, IOmm, 1022 
and "2 can be expressed by elementary functions. The 5 x S matrix A"@@) is given as 
follows: 

[AuB] = , (44) 
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After calculating its determinant D ( k )  and the algebraic complements B@(lc) ,  we obtain 
the Fourier transformations &@(k) when k3 = 0: 

(45i) 

(450 -13 - G 3 i  - ,323 = 632 ~ $4 = G43 = ,335 = G53 = 0 G -  - 

where 

k2 = k: + k: C (c66K1 - R:)(CII Ki - I?;). (46) 

Substituting equation (45) into equation (43) and carrying out the Fourier integraIs, 
we obtain the expressions of the displacement field for (br, 0, 0, b:, 0). Then, completing 
the coordinate transformation mentioned above, the expressions corresponding to Burgers 
vector (0. bi, 0,O. b:) can be found. 

The final results are as follows: the phonon displacement field, 
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where r2 = x t  + x; and ro is the radius of dislocation core. 

5. Discussion 

Now we discuss the range suitable for the application of the elastic model derived in 
this paper. The elastic model of dislocations is based on the generalized elasticity theory 
of quasicrystals [l] in which the elastic free energy is described as proportional to the 
square gradient of phason variables. It is well known, for describing quasicrystal structures, 
that there are two basic approaches: the continuum density-wave picture and the unit-cell 
picture. Both the pictures are useful for studying the physical properties of quasicrystals. 
Nevertheless, as has already been pointed out in [NI, there are fundamental open questions. 
In the density-wave picture the elasticity energy grows as the square of the gradient in the 
phason field, just as for phonons. In the unit-cell picture, phason excitations correspond 
to local discrete rearrangements. If one associates some fixed energy per mismatch in the 
unit-cell picture, one finds that the energy scales linearly rather than quadratically with the 
gradient in w. If the unit-cell picture is correct, what is the complete elasticity theory of 
quasicrystals? Recently, Jeong and Steinhardt [19] have studied the phason dynamics of an 
energetically stabilized tiling model for three-dimensional bodies with decagonal symmetry. 
According to their results, there is a transition temperature Tc. When T c Tc the system is 
in the locked phase, in which the energy is proportional to IAwl. When T > T, the system 
is in the unlocked phase and the elastic energy grows as (Aw)'. It follows that the elastic 
model discussed in the present paper is correct for quasicrystals in the unlocked phase. 

As has already been pointed out in section 4 the elasticity property of decagonal 
quasicrystals (3D bodies) is different from that of planar decagonal quasicrystals (zD). Hence, 
the expressions of the elastic fields of dislocations in both of them are different from each 
other, in general. However, it is possible to have the same form in some special case. For 
example, as discussed in section 4, because the dislocation line is along the periodic axis 
(xg) of the decagonal quasicrystal (3D), we have all a, = 0 for U and w. In consequence, 
the expressions (47ag(47e) in the present paper will be consistent with expressions (4.9a)- 
(4.94 in [5] obtained by De etal for a dislocation (point) in a planar quasicrystal provided 
we take (h+Zp) and I.L instead of C11 and c66, respectively. But when a straight dislocation 
line is lying on the decagonal symmetry plane this is not the case. For this dislocation line, 
the expression of the elastic displacement and the stress fields have been derived using a 
generalized Eshelby's method developed by us [20]. 

By using the general expression (S), recently, we have calculated the elastic 
displacement fields of dislocation lies either parallel to the periodic direction or lying 
on the quasiperiodic plane of a dodecagonal quasicrystal (3D solid) [21]. Moreover, besides 
the expressions of U and w, we have also given ZD tiling pictures, which show the effects 
of the p h o n  and the total displacement fields induced by a dislocation line. These 
pictures illustrate that the results derived from this elastic model are in agreement with 
the fundamental theory of dislocations in quasicrystals 1161. 

By using the defocused convergent-beam electron diffraction technique, Burgers vectors 
of dislocations in Al-Co-Ni decagonal quasicrystal were identified [I71 to be 6 = 
(0,1,0,0, -1,O) and 8 = (0,1,1, -1, -1,O), which correspond to 6 = (0, bi,O, O,-bt) 
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in the coordinate system used here with I -bLl/lbn[ = I/s for the former and ~ - b L ~ / ~ b ~ ~ ~  = 
l/r3 for the latter (5 = ( 1  + d ) / Z ) .  When the dislocation lines are along the periodic 
direction, their displacement fields can be obtained from equation (47) after substituting 
concrete values in these equations. 

Notice that the dislocation coordinate system in this specific example is the same as the 
quasiclystal coordinate system, which simplified the calculation. Otherwise a coordinate 
transformation must be carried out accordingly. 
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